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Abstract. This paper describes a general procedure for calculating the traces of reduced density
matrices of any orderp of anN -electron system, in the basis of the irreducible representations
of the symmetric groupSp , in a spin-free formalism. The numerical values of these traces
are determined by useful formulae. This approach provides a suitable study of theN - and
S-representability of the reduced density matrices.

1. Introduction

The pth-order reduced density matrices (p-RDM) have proved to be powerful tools in
the calculation of physical properties of many-body systems (McWeeny 1960, Davidson
1976). These matrices are particularly used in atomic and molecular physics or in quantum
chemistry as they avoid the explicit use of theN -electron wavefunctions which are always
more difficult to deal with. Most of the physical situations are described through the first-
and second-order reduced density matrices (1-RDM) and (2-RDM). However, there are also
some treatments, as in coupled-cluster theory (Paldus and Jeziorski 1988), in spin-adapted
reduced Hamiltonian theory (Lainet al 1988) or in the spin-coupled valence approach
(Cooperet al 1991), where higher-orderp-RDMs (p > 2) are required.

From a computational point of view, it is always convenient to reduce the size of the
p-RDMs as much as possible. Hence, the spin-free formulation, which deals with orbital
functions instead of spin-orbitals, is the most advisable formalism to describe systems out of
magnetic fields. However, a block factorization of the spin-freep-RDMs can be achieved
when those matrices are expressed according to the basis functions of the irreducible
representations of the symmetric groupSp, the group constituted by the permutations on
p objects (Pauncz 1995). In this way, each of the factorized blocks can be dealt with
independently.

The traces of the different blocks of the spin-freep-RDM, expressed according to
the irreducible representations of the symmetric groupSp, are functions of the number
of electronsN and the spinS of the system which they represent. These relationships
constitute necessary conditions for theN - andS-representability of thep-RDM (Coleman
1963). In the case of the 2-RDM, this kind of relation for the traces of each of the two
blocks obtained according to theS2 group is well established (Bingel and Kutzelnigg 1970).
Recently, a relationship between both traces has been used in studies of population analysis
which try to visualize chemical bonds (Ponec and Bochicchio 1995). However, similar
expressions for higher orders (p > 2) have not been described. The aim of this paper is to
report a simple and general procedure which allows the calculation of the partial traces of a
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p-RDM, corresponding to anN -electron state with a defined spinS, factorized according to
the irreducible representations of the groupSp. Our approach does not need the evaluation
of matrix elements of thep-RDM and leads to a general expression that fits for any value
of the reduced orderp and the spinS of theN -electron system represented by thatp-RDM.
The method is based on our previous studies of traces ofpth-order replacement operators
(p-RO) calculated over finite-dimensionalN -electron spin-adapted spaces (Torreet al 1993,
Torre and Lain 1995, Lain and Torre 1995a, Planelles and Karwowski 1997) which have
been used in the determination of spin-adapted reduced Hamiltonians (Lainet al 1988)
as well as in the calculation of moments of spectral density distributions (Lain and Torre
1995b).

The organization of the paper is as follows. In section 2 a review of traces ofp-
ROs is reported. Section 3 describes the procedure to determine the traces of permutation
symmetry-adaptedp-RDMs. Finally, the appendix describes the results for the four lowest
orders of thep-RDM.

2. Traces ofp-ROs

We will refer to anN -electron system described by a nonrelativistic, clamped nuclei and
spin-independent Hamiltonian which, in a spin-free second quantized formalism, can be
written as

Ĥ = 1
2

∑
i,j,k,l

2Hik
jl

2Eikjl (1)

where

2Hik
jl = (ij |kl)+

1

N − 1
(δkl εij + δij εkl) (2)

(ij |kl) are the standard two-electron integrals (in the(11|22) convention) andεij are the
one-electron integrals.2Eikjl are the second-order spin-free replacement operators (2-RO)
whosep-order version is (Kutzelnigg 1985, Paldus and Jeziorski 1988)

pE
i1...ip
j1...jp
=
∑
σ1

. . .
∑
σp

b+i1σ1
. . . b+ipσpbjpσp . . . bj1σ1 (3)

whereb+ikσk /bjkσk are the usual creation/annihilation fermion operators;σ1, . . . , σp are the
spin coordinates andi1, . . . , ip, j1, . . . , jp . . . are theK orbital functions of an orthonormal
basis set.

The HamiltonianĤ is projected onto an antisymmetric and spin-adapted model space
HA(N,K, S, Sz) which is a subspace of a finite-dimensional Hilbert space (S and Sz
are the standard spin quantum numbers andA stands for antisymmetric). The subspace
HA(N,K, S, Sz), which is known as the full configuration-interaction space (Paldus 1976),
is defined as the antisymmetric and spin-adapted part of theN -fold tensorial product of a
one-electron space

HA(N,K, S, Sz) = (V ⊗N2K )AS,Sz . (4)

The one-electron spaceV2K is spanned by a set of 2K spin-orbitals and is a product of the
K-dimensional orbital space

VK = {8k}Kk=1 (5)

spanned by a set ofK orthonormal orbitals and the two-dimensional spin space.
We will denote with |LS〉 the N -electron eigenstates of the Hamiltonian (1)

corresponding to a defined spinS and a determinedSz value. As is well known, the



Traces of pth-order reduced density matrices 5813

expectation value of ap-RO generates the corresponding element of thep-RDM of that
state, so that

pD
i1...ip
j1...jp

(LS) =
〈LS |pEi1...ipj1...jp

|LS〉
p!

. (6)

The elements of thep-RDM can also be expressed in the basis functions of the
irreducible representations of the symmetry groupSp, as linear combinations of the matrix
elements in the basis of the product of orbitals. It is well known (Pauncz 1995) that the
spatial part of thep-electron eigenfunctions of the spin operatorŜ2 (as well as the pure spin
functions) are basis functions of those irreducible representations, so that the permutation
symmetry-adaptedp-RDM is factorized into blocks, each of them related to one value of
the spin of thep electrons. Consequently, the traces of this kind of block depend on
the correspondingp-electron spin as well as on the spinS of theN -electron system that
the p-RDM represents. The values of these traces, for any orderp of the RDM, will be
investigated in the next section.

We have called spin-adapted trace of a determinedp-RO, 〈pEi1...ipj1...jp
〉N,K,S (Torre et al

1993), to

〈pEi1...ipj1...jp
〉N,K,S =

∑
LS
〈LS |pEi1...ipj1...jp

|LS〉 (7)

where the subscriptsN,K, S mean that the numerical value of that trace depends on those
parameters. Although the eigenstates|LS〉 refer to a fixedSz quantum number, the value
of the trace (7) is independent of it so that it has not been considered.

As was mentioned in the introduction, an optimized calculation of expression (7) has
been carried out in previous papers, both for thep = N case (Lain and Torre 1995b) and
for the p < N one (Lain and Torre 1995a). Consequently, it can easily be determined,
even in a systematic way on a computer. In the next section we apply our approach for the
determination of spin-adapted traces ofp-ROs to the calculation of the traces of permutation
symmetry-adaptedp-RDMs

3. Traces of permutation symmetry-adaptedp-RDMs

Let us define thep-electron operator

pM̂ = 1

p!

∑
(i1...ip)
(j1...jp)

pM
i1...ip
j1...jp

pE
i1...ip
j1...jp

(8)

in which the matrix elementpM
i1...ip
j1...jp

is

pM
i1...ip
j1...jp
=
∑
LS

pD
i1...ip
j1...jp

(LS). (9)

In what follows, we will represent the spin quantum numbers ofp-electron functions byj
and jz to distinguish from those of theN -electron ones,S and Sz. In this way, we will
consider the trace of thepM̂ operator defined by

Tr[pM̂]j =
∑
Lj
〈Lj |pM̂|Lj 〉 (10)
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where|Lj 〉 are thep-electron functions, eigenstates of theŜ2 operator, corresponding to the
spin quantum numbersj andjz. From equations (9) and (10)

Tr[pM̂]j = 1

p!

∑
Lj

∑
(i1...ip)
(j1...jp)

∑
LS

pD
i1...ip
j1...jp

(LS) 〈Lj |pEi1...ipj1...jp
|Lj 〉. (11)

Equation (11) is a projection of the
∑
LS

pD
i1...ip
j1...jp

(LS) matrix over thep-electron
functions|Lj 〉, whose orbital functions are basis functions of the irreducible representation
of the groupSp related to the spin quantum numberj . Consequently, Tr[pM̂]j is identical to
the trace of the corresponding permutation symmetry-adapted block when the matrix defined
by equation (9) is factorized according to the irreducible representations of the groupSp. If
we represent by [pD(LS)]j the block of thep-RDM of theN -electron state|LS〉 expressed
in that same basis, equation (11) can be written as∑
LS

Tr[pD(LS)]j = 1

p!2

∑
Lj

∑
(i1...ip)
(j1...jp)

∑
LS
〈LS |pEi1...ipj1...jp

|LS〉〈Lj |pEi1...ipj1...jp
|Lj 〉 (12)

where equation (6) has been taken into account.
The value of the trace Tr[pD(LS)]j is, obviously, independent of the|LS〉 state, for a

definedS value. Consequently, the trace of the block related to thep-electron spinj , of
a p-RDM corresponding to aN -electron state with spinS, expressed in the basis of the
irreducible representations of the groupSp, is

Tr[pD(LS)]j =
∑
(i1...ip)
(j1...jp)

〈pEi1...ipj1...jp
〉N,K,S 〈pEi1...ipj1...jp

〉p,j
(p!)2 D(N,K, S)

(13)

whereD(N,K, S) is the number ofN -electron states of spinS, |LS〉 that can be constructed
with K orbitals (the dimension of theHA(N,K, S, Sz) subspace). Its value is independent
of theSz quantum number and it is given by the well known Weyl–Paldus formula (Paldus
1974),

D(N, S,K) = 2S + 1

K + 1

(
K + 1

1
2N − S

)(
K + 1

1
2N + S + 1

)
(14)

where〈pEi1...ipj1...jp
〉N,K,S has been defined in equation (7) and, in a similar way

〈pEi1...ipj1...jp
〉p,j =

∑
Lj
〈Lj |pEi1...ipj1...jp

|Lj 〉 (15)

that is, the trace of thep-RO pE
i1...ip
j1...jp

, calculated over the functions ofp electrons with spin
j . The value of this trace is independent of the number of orbitalsK (Torre and Lain 1995)
as well as the parameterjz so that they have not been considered.

The trace of anyp-RO can easily be calculated through the general expressions reported
previously (Lain and Torre 1995a, b) and, consequently, equation (13) provides a suitable
way to construct a simple and general computer program for the calculation of the numerical
values of the traces of any permutation symmetry-adaptedp-RDM. However, we will
transform equation (13) to obtain simpler explicit expressions of the partial traces of any
factorizedp-RDM in terms of only the number of electronsN and the spinS of the system.



Traces of pth-order reduced density matrices 5815

As has been reported previously (Torreet al 1993), the sets(i1 . . . ip) and (j1 . . . jp)

must be composed of identical orbitals (one is a permutation of the other), otherwise the
traces〈pEi1...ipj1...jp

〉N,K,S and 〈pEi1...ipj1...jp
〉p,j are zero and, as we are dealing with fermions, a

determinate index in those sets can be repeated only once (otherwise the Pauli principle
would be violated). Furthermore, the value of ap-RO trace is invariant with respect to
numbering orbitals, it only depends on their ordering. Consequently, it is possible to reduce
the number of addens of the sum

∑
(i1...ip)
(j1...jp)

, in formula (13), so that only the nonequivalent

ones are calculated. In this sense, we will represent byQ0 the number of possibilities of
constructing, withK orbitals, creation sets(i1 . . . ip), without any repetition of indices, that
is, Q0 = K(K − 1) . . . (K − p + 1). Similarly, Q1 will be an identical concept when the
set(i1 . . . ip) has one repeated index and, in general,Qr when there arer repeated indices.
With these considerations, formula (13) can be rewritten as

Tr[pD(LS)]j =
rmax∑
r=0

∑
Pr

Qr〈pE11...rr...(p−r)
Pr (11...rr...(p−r))〉N,K,S 〈pE11...rr...(p−r)

Pr (11...rr...(p−r))〉p,j
(p!)2 D(N,K, S)

(16)

where rmax is the maximum number of repeated indices that can appear in thep-RO
(rmax = 1

2p (p even) or rmax = 1
2p − 1 (p odd)) andPr is a permutation of the set

(1, 1, . . . r, r . . . (p− r)) (with r repeated indices). Obviously, the traces ofp-ROs withPr
belonging to the same class of the groupSp are identical, so that only one trace out of each
class need be evaluated.

A more useful version of formula (16) can be obtained taking into account that the
value of Tr[pD(LS)]j is independent of the number of orbitalsK (that independence arises
from a cancellation among the factorsQr , the Weyl–Paldus formulaD(N,K, S) and the
traces〈pE11...rr...(p−r)

Pr (11...rr...(p−r))〉N,K,S). As any value ofK can be used, we propose the lowest

one, that is,K = 1
2N +S. With that condition,D(N,K, S) = ( 1

2N+S
2S

)
and the evaluation of

traces〈pE11...rr...(p−r)
Pr (11...rr...(p−r))〉N,( 1

2N=S),S is considerably simplified. Consequently, formula (16)
will be used in the form

Tr[pD(LS)]j =
rmax∑
r=0

∑
Pr

Qr〈pE11...rr...(p−r)
Pr (11...rr...(p−r)) 〉N,( 1

2N+S),S 〈pE
11...rr...(p−r)
Pr (11...rr...(p−r))〉p,j

(p!)2
(

1
2N+S

2S

) (17)

which constitutes a practical version of equation (13). In equation (17), the factors
Qr obviously refer to 1

2N + S orbitals and their calculation is trivial. Following the

procedure described previously (Torreet al 1993), the traces〈pE11...rr...(p−r)
Pr (11...rr...(p−r))〉N,( 1

2N+S),S
and 〈pE11...rr...(p−r)

Pr (11...rr...(p−r))〉p,j can easily be reduced to simple relations between binomial
coefficients, involving only the parametersN and S. Hence equation (17) allows us to
derive the particular expressions for the partial traces of anyp-RDM, in the symmetric
group approach, through simple functions of those parameters.

The appendix shows the relations obtained in this way for the four lower orders
of the permutation symmetry-adapted reduced density matrices. Obviously, the results
corresponding to the cases1Dj= 1

2
, 2Dj=1 and 2Dj=0 are equivalent to previously

reported ones (Bingel and Kutzelnigg 1970). Using our methodology, the derivation of
the relations for higher orders is straightforward. The simple dependence of the traces of
these matrices on the number of electrons of the system,N , and its spinS, provides a suitable
study of theN - andS-representability which are necessary conditions thatp-electron tools
must fulfil to representN -electron systems properly.
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In conclusion, this paper has described a new, simple and general approach to calculating
the numerical values of the traces of permutation symmetry-adapted reduced density matrices
of any orderp. The procedure, which is based on the determination of traces of replacement
operators, does not need a previous evaluation of thep-RDM elements. Our treatment also
leads to formulae providing a simple analysis of theN - and S-representability properties
which are useful in methods which approximate high-order reduced density matrices.
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Appendix. Traces of the four lowest-order permutation symmetry-adapted reduced
density matrices

Tr[1D]j= 1
2
=
(

1
2N + S

2S

)−1 (
1
2N + S

) 1∑
i=0

(
1
2N + S − i

2S

)
(A1)

Tr[2D]j=1 =
(

1
2N + S

2S

)−1 ( 1
2N + S

2

) 2∑
i=0

(
1
2N + S − i

2S

)
(A2)

Tr[2D]j=0 =
(

1
2N + S

2S

)−1 ( 1
2N + S + 1

2

) (
1
2N + S − 1

2S

)
(A3)

Tr[3D]j= 3
2
=
(

1
2N + S

2S

)−1 ( 1
2N + S

3

) 3∑
i=0

(
1
2N + S − i

2S

)
(A4)

Tr[3D]j= 1
2
=
(

1
2N + S

2S

)−1 ( 1
2N + S + 1

3

) 2∑
i=1

(
1
2N + S − i

2S

)
(A5)

Tr[4D]j=2 =
(

1
2N + S

2S

)−1 ( 1
2N + S

4

) 4∑
i=0

(
1
2N + S − i

2S

)
(A6)

Tr[4D]j=1 =
(

1
2N + S

2S

)−1 ( 1
2N + S + 1

4

) 3∑
i=1

(
1
2N + S − i

2S

)
(A7)

Tr[4D]j=0 =
(

1
2N + S

2S

)−1 ( 1
2N + S)2

[(
1
2N + S

)2− 1
]

24

(
1
2N + S − 2

2S

)
. (A8)
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