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Abstract. This paper describes a general procedure for calculating the traces of reduced density
matrices of any ordep of an N-electron system, in the basis of the irreducible representations
of the symmetric grougs,, in a spin-free formalism. The numerical values of these traces
are determined by useful formulae. This approach provides a suitable study of-taed
S-representability of the reduced density matrices.

1. Introduction

The pth-order reduced density matricep-RDM) have proved to be powerful tools in

the calculation of physical properties of many-body systems (McWeeny 1960, Davidson
1976). These matrices are particularly used in atomic and molecular physics or in quantum
chemistry as they avoid the explicit use of tNeelectron wavefunctions which are always
more difficult to deal with. Most of the physical situations are described through the first-
and second-order reduced density matrices (1-RDM) and (2-RDM). However, there are also
some treatments, as in coupled-cluster theory (Paldus and Jeziorski 1988), in spin-adapted
reduced Hamiltonian theory (Laiet al 1988) or in the spin-coupled valence approach
(Cooperet al 1991), where higher-ordgsr-RDMs (p > 2) are required.

From a computational point of view, it is always convenient to reduce the size of the
p-RDMs as much as possible. Hence, the spin-free formulation, which deals with orbital
functions instead of spin-orbitals, is the most advisable formalism to describe systems out of
magnetic fields. However, a block factorization of the spin-fpeBDMs can be achieved
when those matrices are expressed according to the basis functions of the irreducible
representations of the symmetric groSip, the group constituted by the permutations on
p objects (Pauncz 1995). In this way, each of the factorized blocks can be dealt with
independently.

The traces of the different blocks of the spin-freeRDM, expressed according to
the irreducible representations of the symmetric gréyp are functions of the number
of electronsN and the spinS of the system which they represent. These relationships
constitute necessary conditions for tNe and S-representability of thep-RDM (Coleman
1963). In the case of the 2-RDM, this kind of relation for the traces of each of the two
blocks obtained according to ttfe group is well established (Bingel and Kutzelnigg 1970).
Recently, a relationship between both traces has been used in studies of population analysis
which try to visualize chemical bonds (Ponec and Bochicchio 1995). However, similar
expressions for higher orderg & 2) have not been described. The aim of this paper is to
report a simple and general procedure which allows the calculation of the partial traces of a
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p-RDM, corresponding to aiv-electron state with a defined spih factorized according to
the irreducible representations of the graiyp Our approach does not need the evaluation
of matrix elements of the-RDM and leads to a general expression that fits for any value
of the reduced ordep and the spir§ of the N-electron system represented by thaRDM.
The method is based on our previous studies of tracgsttorder replacement operators
(p-RO) calculated over finite-dimension&l-electron spin-adapted spaces (Taztal 1993,
Torre and Lain 1995, Lain and Torre 1995a, Planelles and Karwowski 1997) which have
been used in the determination of spin-adapted reduced Hamiltonians €t ain1988)
as well as in the calculation of moments of spectral density distributions (Lain and Torre
1995b).

The organization of the paper is as follows. In sett® a review of traces op-
ROs is reported. Section 3 describes the procedure to determine the traces of permutation
symmetry-adapte@-RDMs. Finally, the appendix describes the results for the four lowest
orders of thep-RDM.

2. Traces ofp-ROs

We will refer to anN-electron system described by a nonrelativistic, clamped nuclei and
spin-independent Hamiltonian which, in a spin-free second quantized formalism, can be
written as
1 2qyik 2 ik
=3 > ’Hjf’E} 1)
i,j.k,l
where

1
PHjf = kD) + = Gu i + 8 €u) &)
(ij|kl) are the standard two-electron integrals (in ti€|22) convention) and;; are the
one-electron integrals?Ej’ﬁf‘ are the second-order spin-free replacement operators (2-RO)
whosep—order version is (Kutzelnigg 1985, Paldus and Jeziorski 1988)

11 z,, )
jl Jp z : Z :btlal . tpa,, /116]) et b]lﬂl (3)

wherebltak/bjm are the usual creauon/anmhllation fermion operatefs.. .., o, are the
spin coordinates and, . .., i,, j1, ..., j, ... are thek orbital functions of an orthonormal
basis set.

The HamiltonianH is projected onto an antisymmetric and spin-adapted model space
HA(N,K,S,S.) which is a subspace of a finite-dimensional Hilbert spageafd S,
are the standard spin quantum numbers dndtands for antisymmetric). The subspace
HA(N, K, S, S.), which is known as the full configuration-interaction space (Paldus 1976),
is defined as the antisymmetric and spin-adapted part oivitield tensorial product of a

one-electron space
HA(N,K,S.5) = (Vi")is.- “

The one-electron spadé is spanned by a set ofk2 spin-orbitals and is a product of the
K -dimensional orbital space

Vi = {®ihiy (5)

spanned by a set of orthonormal orbitals and the two-dimensional spin space.
We will denote with |Ls) the N-electron eigenstates of the Hamiltonian (1)
corresponding to a defined spf and a determined, value. As is well known, the
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expectation value of @-RO generates the corresponding element of giieDM of that
state, so that

o (LsIPE"7|Ls)
D (L) = (6)
P p

The elements of thep-RDM can also be expressed in the basis functions of the
irreducible representations of the symmetry gréiypas linear combinations of the matrix
elements in the basis of the product of orbitals. It is well known (Pauncz 1995) that the
spatial part of thep-electron eigenfunctions of the spin operai"ér(as well as the pure spin
functions) are basis functions of those irreducible representations, so that the permutation
symmetry-adapteg-RDM is factorized into blocks, each of them related to one value of
the spin of thep electrons. Consequently, the traces of this kind of block depend on
the corresponding-electron spin as well as on the spinof the N-electron system that
the p-RDM represents. The values of these traces, for any gedef the RDM, will be
investigated in the next section.

We have called spin-adapted trace of a determipeRiO, (f’Ej'i T yv.x.s (Torre et al
1993), to

(PEST ks = Y (LsIPET|Ls) 7
Ls
where the subscript®y’, K, S mean that the numerical value of that trace depends on those
parameters. Although the eigenstaigs) refer to a fixedS, quantum number, the value
of the trace (7) is independent of it so that it has not been considered.

As was mentioned in the introduction, an optimized calculation of expression (7) has
been carried out in previous papers, both for the- N case (Lain and Torre 1995b) and
for the p < N one (Lain and Torre 1995a). Consequently, it can easily be determined,
even in a systematic way on a computer. In the next section we apply our approach for the
determination of spin-adapted tracesgeROs to the calculation of the traces of permutation
symmetry-adaptegh-RDMs

3. Traces of permutation symmetry-adaptedp-RDMs

Let us define th@—electron operator

p o p i1.. Lp P i1.. ’I’
M = Z 11 -Jp Jl Jp (8)
(i1.. lp)

(J1---Jp)

in which the matrix eIemerﬂM]'l1 ’,” is

"M = 2 "D, (L) (9)

In what follows, we will represent the spin quantum numberg-@lectron functions by
and j; to distinguish from those of thé/-electron onesS and S.. In this way, we will
consider the trace of theM operator defined by

TP M]; =) (L7 MIL;) (10)

Lj
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where|L;) are thep-electron functions, eigenstates of tﬁ\%operator, corresponding to the
spin quantum numberg and j,. From equations (9) and (10)

TPM); = = § YD PDIT (L) (LI ESTIL)). (11)
p. Lj (i1.. lp) Ls
(J1e-Jp)

Equation (11) is a projection of thE&PDJ’i 3” (Ls) matrix over the p-electron

functions|£;), whose orbital functions are basis functions of the irreducible representation
of the groups, related to the spin quantum numberConsequently, TF[M], is identical to

the trace of the corresponding permutation symmetry-adapted block when the matrix defined
by equation (9) is factorized according to the irreducible representations of the §yolip

we represent by”’[D(Ly)]; the block of thep-RDM of the N-electron stat¢Ls) expressed

in that same basis, equation (11) can be written as

Z TI[”D(Ls)]; = ,2 Y S LSIPES L LT IL) (12)
Lj (i1..ip) Ls
(j1.. Jﬁ)

where equation (6) has been taken into account.

The value of the trace T (Ly)]; is, obviously, independent of the&) state, for a
definedS value. Consequently, the trace of the block related topthedectron spinj, of
a p-RDM corresponding to av-electron state with spir§, expressed in the basis of the
irreducible representations of the grofip, is

i1.. l,, i1.. lp
(PE; INks(PE; 7 pj

(pH2 D(N, K, S)

T’D(Ls)]; = Y (13)

(i1---ip)

(jl---j/))
whereD(N, K, §) is the number ofV-electron states of spifi, |Lg) that can be constructed
with K orbitals (the dimension of th&4 (N, K, S, S.) subspace). Its value is independent
of the S, quantum number and it is given by the well known Weyl—-Paldus formula (Paldus
1974),

25+1 K+1 K+1
D(N’S’K)_K——H(%N—S)<%N+S+l> (14)
where(PEJ’l1 ;")N k.s has been defined in equation (7) and, in a similar way
CEL g = D (LT ETIE) (15)

L;

that is, the trace of thg-RO PEJ’1 ;” calculated over the functions ¢f electrons with spin
j. The value of this trace is mdependent of the number of orbRa(3orre and Lain 1995)
as well as the parametgr so that they have not been considered.

The trace of anyp-RO can easily be calculated through the general expressions reported
previously (Lain and Torre 1995a, b) and, consequently, equation (13) provides a suitable
way to construct a simple and general computer program for the calculation of the numerical
values of the traces of any permutation symmetry-adaptdRDM. However, we will
transform equation (13) to obtain simpler explicit expressions of the partial traces of any
factorizedp-RDM in terms of only the number of electrons and the spir§ of the system.
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As has been reported previously (Toeeal 1993), the setgii...i,) and (j1... j,)
must be composed of identical orbitals (one is a permutation of the other), otherwise the
traces("E;"/)n.x.s and ("E"/), ; are zero and, as we are dealing with fermions, a
determinate Index in those sets can be repeated only once (otherwise the Pauli principle
would be violated). Furthermore, the value ofpaRO trace is invariant with respect to
numbering orbitals, it only depends on their ordering. Consequently, it is possible to reduce

the number of addens of the sum,.; ), in formula (13), so that only the nonequivalent
aew-Jp)
ones are calculated. In this sense, we will represenPbythe number of possibilities of

constructing, withK orbitals, creation set§; . ..i,), without any repetition of indices, that
iS, Qo= K(K—-1)...(K — p+1). Similarly, Q; will be an identical concept when the
set(iy...i,) has one repeated index and, in genegal,when there are repeated indices.
With these considerations, formula (13) can be rewritten as

11..rr..(p—r) pEll...rr...(p—r)

o8 O PER a1 (perINKS CER Q1 0 (g dpi
DLl =2 ) OV DN KS) (16)

where rmax IS the maximum number of repeated indices that can appear iptR©
(fmax = 3p (p even) orrmax = 3p — 1 (p odd)) and P, is a permutation of the set
1,1,...r,7r...(p—r)) (with r repeated indices). Obviously, the tracespeROs with P,
belonging to the same class of the graijpare identical, so that only one trace out of each
class need be evaluated.

A more useful version of formula (16) can be obtained taking into account that the
value of TrP D(Ls)]; is independent of the number of orbitals (that independence arises
from a cancellation among the factog;, the Weyl-Paldus formul® (N, K, S) and the

traces(” Ep iy """ )n.k.s). As any value ofk can be used, we propose the lowest

one, that isK = 3N +S. With that condition,D(N, K, S) = (%]Z;S) and the evaluation of
traces(ﬂE,l,rl&'l"lﬁ;f_p_;;)fr)))N,(%N:S)’S is considerably simplified. Consequently, formula (16)
will be used in the form

11..rr...(p—r) 11.rr..(p—r)
T'max QV(pEP AL (p— > 1 (pE . ) .
. (11..rr... p—r)) ' N,(GN+S5),S P.(AL..rr...(p—r))/P:]
T’ DL, =) ). — (17)
=0 P (ph)2 (§N+S)
25

which constitutes a practical version of equation (13). In equation (17), the factors

Q, obviously refer to%N + S orbitals and their calculation is trivial. Following the

procedure described previously (Toeeal 1993), the trace#E}Drli'l"f;‘,‘(r’,’. I;)_r))) N.AN+S).S

and ("E,l,’_l(‘l"lr_'_'r'i’_’_}l’,)_r)))p,_,- can easily be reduced to simple relations between binomial
coefficients, involving only the parametei and S. Hence equation (17) allows us to
derive the particular expressions for the partial traces of p#3DM, in the symmetric
group approach, through simple functions of those parameters.

The appendix shows the relations obtained in this way for the four lower orders
of the permutation symmetry-adapted reduced density matrices. Obviously, the results
corresponding to the case®D;_:, °D;—; and ?D;—o are equivalent to previously
reported ones (Bingel and Kutzezlnigg 1970). Using our methodology, the derivation of
the relations for higher orders is straightforward. The simple dependence of the traces of
these matrices on the number of electrons of the systerand its spinS, provides a suitable
study of theN- and S-representability which are necessary conditions phratectron tools
must fulfil to representv-electron systems properly.
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In conclusion, this paper has described a new, simple and general approach to calculating
the numerical values of the traces of permutation symmetry-adapted reduced density matrices
of any orderp. The procedure, which is based on the determination of traces of replacement
operators, does not need a previous evaluation optRRDM elements. Our treatment also
leads to formulae providing a simple analysis of thie and S-representability properties

which are useful in methods which approximate high-order reduced density matrices.
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Appendix. Traces of the four lowest-order permutation symmetry-adapted reduced

density matrices

IN+ s L AN s
1 _ 1
Tr["D];_s —( 2 og ) (2N+S); ( 2" o8 )
INFSY P AINES V& [ AN S
2 . _ 2 2 2
meona= (5 ) ()R ()
1 -1 1 1
2y _ [ 3N+S SN+S+1 sSN+S5-1
Tl D]FO_( 25 ) < 2 25
1 -1 1 3 1
! D]./—§—< 25 ) < 3 ; 25
1 -1 1 2 1
3 _( 5N+S SN+S+1 SN+ S—i
T D]f—%—( 25 ) ( 3 ; 25
INFSN T INFS N\ [ AN +S—i
D1, ., — 2 2
mope= (57 ) ()L ()
INESN T AINES L\ [ AN+ S—i
4 — 2 2 2
mopa= (5 ) (TS ()
-1 2
D] o= ( ENFS GN+9Y (GN+8) 1] (Inys5-2
j=0 28 24 28
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